Wavelet Shrinkage Generalized Bayes Estimation for Multivariate Normal Distribution Mean Vectors with unknown Covariance Matrix under Balanced-LINEX Loss

نویسندگان

چکیده

In this paper, the generalized Bayes estimator of mean vector parameter for multivariate normal distribution with Unknown and covariance matrix is considered. This estimation performed under balanced-LINEX error loss function. The by using wavelet transformation investigated. We also prove admissibility minimaxity shrinkage we present simulation study real data set test validity new estimator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BAYES ESTIMATION USING A LINEX LOSS FUNCTION

This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density

متن کامل

Estimating a Bounded Normal Mean Under the LINEX Loss Function

Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...

متن کامل

Non-parametric shrinkage mean estimation for quadratic loss functions with unknown covariance matrices

In this paper, a shrinkage estimator for the population mean is proposed under known quadratic loss functions with unknown covariance matrices. The new estimator is nonparametric in the sense that it does not assume a specific parametric distribution for the data and it does not require the prior information on the population covariancematrix. Analytical results on the improvement of the propos...

متن کامل

Estimating a Bounded Normal Mean Under the LINEX Loss Function

Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Colombiana de Estadistica

سال: 2022

ISSN: ['0120-1751', '2389-8976']

DOI: https://doi.org/10.15446/rce.v45n1.92037